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4,

Before proceeding to the next section, we mention one

caution which should be observed when using the MIC and MLC

fidelity criteria. As previously noted , neither criterion penalizes

a rever sible linear transformation of the source output {x). In

situations where some such transformations may be undesirable

with regard to the final output to the user , one must transmit the

additional side information needed to invert the first transformation.

This would seldom seem to be a prob lem in practice, since one

would not deliberately design a source encoder which implemented

an undesirable linear transformation of the source output .

14
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IV. RATE-DISTORTION FUNC TIONS FOR GAUSSIAN SOURCES

- 
- In this section, we derive the rate-distortion functions for

a discrete-time stationary Gaussian source under either MIC or

MLC fidelity constraints. We shall make use of the following

results .

Definition. The average mutual information rate I(x; y) between two

discrete-time, jointly stationary random processes {x} and {y} pos-

ses sing joint and marginal n-th order multivariate density functions

~~~~~~~~~ P~~~~~~ (U) and p~~~(v) respectively (
~ 

and v are n-dimensional

vector variables of successive source values), is defined by

I (x;y)  = lin-i ! i ( x ~~ ;y ~~ ) (7)

where

(n)

I (x
(n) ;y (n)) 

~~fJdu dv P (u,v)log

[ 

( )  

~~
].  

(8)

The above definition is sufficient for the Gaussian sources

to be considered iii this section . For a more general definition,

see [i , Ch. 7].

Theorem 4. 1 (Pinsker). Let {x} be a discrete-time Gaussian process
which is jointly stationary with another discrete-time process {y}, the

two processes possessing auto-spectral densities ~~~(w) and ~~ (w),

• respectively, and cross-spectral density 
~‘xy~~~’ 

0 ~ ~ r . Then the

greatest lower bound to the average mutual information rate I(x; y)

is obtained when {x} and {y) are jointly Gaussian.

- 

- 

‘5 

-
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Proof: See [8) or [ 9 1 .

I. Theorem 4. 2. Let {x} and -( y )  be zero-mean, jointly stationary

Gaussian processes. Then there exists a linear ope rator L and a

stationary Gaussian process {z} independent of (x} such that

= Lx k +z k ,

where Xk, 
~k’ and Z

k 
are typical realizations of {x), {y}, and

{z}, res pectively.

Proof: See [i , p. 125] .

Theorem 4 .3  (Pinsker).  Let {x} and {y} be discrete-time, jointly

stationary Gaussian processes possessing respective auto- and cross-

spectral densities ~~~~ ~~~~ and ~~~~(u4 . Then their average

mutual information rate I(x; y) is given by

I (x ;y )  = _
~~~~fdw log [1

~~ 
Y~~~(~~)] .  (10)

Proof: See [9, p. 1 751.
W ith the above preliminaries, we shall now determine the

ra te-distortion functions R 1(D) and R L(D) of a Gaussian source {x}
under MIC and MLC fidelity constraints, re spectively. Specifically,
the fideli ty requirement is of the form

f
- 

0 
~~ D , (1 1)f

0

16 
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where for R
1

(D), K(w) is given by

IK(w) = K1(w) = W(w) - 

~~ (~ ) ~y
(W) (12)

and for R
L
(D), K(w) is given by

2 1

K ( )  KL( )  = — W (w) log 
•~
, ( ) ~ ( )  ] . (13)
x y

By our convention, {y} is taken to be the reconstruction of {x}.

The rate-distortion function R(D) of a source {x} with respect

to such a fidelity requirement is defined by

R (D) = inf I (x ;y)  , (14)
0(D)

where the infimum is taken over the class 0(D) of all conditional

probability measures for which ( 11) is satisfied. Howe ver , since

( 11) is expressed solely in terms of the spectral densities ~~~~
~ (w), and ‘

~~ (w), we conclude from Theorem 4. 1 that the minimumy xy
rate in (14) occurs when {x} and {y} are jointly Gaussian. There-

fore , by Theorem 4. 3, the optimization problem implied by (14) is

equivalent to minimizing the quantity

I(x; y) = ~~~~~f d lo~~[1 
- 

~~ 
(15)

subject to the constraint ( 11) . -

‘7

1-
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)

The above minimization problem may be approached via the

calculus of variations [10] .  Following an argument similar to

Berger ’s [1 , pp. 126- 129], note that since the optimum {y} is such

tha t {x} and {y) are jointly Gaussian , we may express ~y ( ) ~ by

Theorem 4. 2 , as

= I B( ~14l
2 

~~~~~~ 
+ 

~~~~~ 
(16)

which implies that

- IB( )I 2 .(~
) ~ 0 , (17)

by virtue of the non-negativity of Z (). In these equations, B() is

the t ransfer  function of an as yet undetermined linear operator. In

addition, we have by Theorem 4. 2

~xy~~ 
= B(

~4~~~
( )  . (18)

Thus the kernels K
1
(w) and K

L
(w) may be wr itten as

F IB(w) I24
~

(w)
= W(w) 

~‘ 
- 

2 (19)

L IB(w)I 
~

( ) +
~~

(w)

I B I 2
~x~~ 1

K L(w) = — W ( w ) log 2 I • (20)

~B(w) f x~~~~~z~~ J
Substituting (16) and (18) into (15), and combining with ( 11),

we see that the minimization problem reduces to finding the critical

point of the functional

18
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j  = f~ { 
log (.Y

(
~

) - i B ( (
~)I 2.x ((4)) 

- ~ K(
)} 

, (21)

where X ( ~ 0) is a Lagrange multiplier, and K ( )  is replaced by K1
(w)

(E quation (19)) for the MIC fidelity criterion , or by KL
( ) (Equation

(20)) for the MLC fidelity criterion. Since ~~ ( )  is fixed , the inde-

pendent variables in (21) are the functions $ ( ) ,  B 1(w) ~ R e ( B ( )},

and B2
(w) = Im {B( )) . Setting the variation of J with respect to each

of these three functions equal to zero yields a single equation, an

indication that no unique values of B1
(w) and B

2
() are required in

conjunction with the optimum 4~~((4 ).’ We now consider each fidelity

criterion separately.

MIC Fidelity Criterion. The variational equations in this case

reduce to

= (1 - ~W(w) ) I B 1
2
.X~~~~. (22)

In order t i  satisf y (17), we require that

(1 
- 

XW(w)) ~ 1~~ (23) 1 -
-

else B(w)1
2 = 0 and hence 4’ ( )  = 0 for all (4 whe re this does not

hold true . The optimum MSC y (~ )for minimum-rate transmissionxy
is then given by

‘This can be shown to be a consequence of the invariance of the MSC
function to time-invariant linear transformations of either (x )  or {y) .

19 
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.1

~ 2 ~B~~~~~~~
2

4 ’ ( )  
1V ( )  = = max (o~ i - 

XW ( ) ) (24)

Having determined the above function , we need only to substitute it

into (1 5) to obtain R 1(D), and thus we have the following result.

R 1(D) for a Gaussian Source. The rate-distortion function R 1(D ) for

a stationary Gaussian source subject to a frequency-weighted MIC

fideli ty requirement is g iven para metrically by the equations

R 1
(D) = 

~~~~~

_ max [o, log( XW ( )) ]  , (25)

and

a 

mm [i . XW( )]
0 

a . (26)

J
0

In part icular , if W ( )  is unity for all w (i. e., no de-emphasis

is placed on the distortion in any portion of the spectrum), then

X = D ’, and we obtain the simple result

R 1(D) = - f log D , 0 ~ D ~ 1 . (27)

This function is plotted in Figure 1 for a base 2 logarithm.

20
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Figure 1. Gaussian MIC and MLC R(D) curves.

t i

21

_ _ _ _ _ _ _ _  
1-

_ _  - - - -~~~~~~~~-  - - -



MLC Fidelity Criterion. The variational equations reduce to

$ (w) = ( i  - XW(w ) ) 1B 1
2

4 ’ ( ) ,  (28)

where (17) now requires

(‘ - 

XW( ) ) ~~ 1 
‘ 

(29)

else IB(w) 1 2 = 0 and • (w) = 0 for all (4 where this does not hold true .

In this case , however , the necessity that (29) be satisfied for some

w , coupled with the fact that 0 ~ W() ~ 1, implies that X <  0. Hence ,

(29) is true for all ~~~ . Thus the optimum MSC V
2

(w) is given by

= (1 - 

XW(w)) ‘ 
(30)

and we have the following result.

for a Gaussian Source. The rate-distort ion function R L(D) for

a stationary Gaussian source subject to a frequency-weighted MLC

fidelity requirement is given parametrically by the equations

R L
(D) = -

~~~

.— 

1

T1 

[i - >~W( )] , (31)

and

D = 

log ( 1  - kww) 

(32)

f d w w ( w)

( 22
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If W(~ ) equals unity for all ~ , then ~ = (i - bD) 
- l  

(b is the

base of the logarithm), and
-;

R
L
(D) = — 

f
log (i - b~~~) , 0 D . (33)

This function is also plotted in Figure 1 for a base 2 logarithm.

The results of this section suggest the operation of an opti-

mum encoder for Gaussian sources. Let us assume for the moment

that the weighting function W (w) is unity for all ~‘, as this case is

somewhat easier to visualize. Then from Equations (24) and (30),

we see that the minimum transmiss ion irate under either MIC or

MLC fidelity constraints is obtained when the MSC V
2 

(w) is uniform
- 

xy
fo r all ~, its specific value determined by the allowable distortion D.

Refe r r ing  back to Properties 2. 4 and 2. 5, a uniform value of

implie s a uniform value of SQR cr(~~) for all w.  Thus , from Equation

(4), the error spectrum produced by an ideal enc oder will be a scaled

copy of the original source spectrum, as shown in Figure 2. The

achievement of such an ideal system would, of course , require an

- infinitely long block code. 
-

_ ______________  _  
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Preserved Spectral Density

Error Spectral Density

_

0 w (Radian frequency)

Figure 2. Illustration of pr eserved source and error
- spectral densities for optimum MIC or MLC

encoding .
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V. COMPARISON WITH MSE SOURCE ENCODING
(4,

I ~ It is instructive to compare the results of the previous

section with the corresponding results for the encoding of Gaussian

sources under a MSE fidelity criterion [ii . The rate-distortion

function R
E

(D) in the latter case is g iven parametrically by

it

R
E

(D) = 
~~~ / dw max ~ log ‘

~ 
) , (34)

and

D = dw mm (0 , 1 (w) ) . (35)

In the event that 1 (w) = 1 for all w, i. e•, {x} is a unity-

variance, memoryless source, then we have -

R E (D) = — 4. log D, 0 ~ D ~ 1 . (36)

Comparing this result with (27), we note that the R1
(D) curve is

identical to the R
E
(D) curve for this source. However, the R

1
(D)

curve is applicable to all Gaus sian sources regardless of the magni- - 
I

bide or the shape of their auto-spectral density • (w), whereas the

L R E (D) curve for unity-variance sources with non-white spectrum lies

below the curve in (36). This behavior points out another fundamental

difference between the MSE and the M1C (or MLC ) fidelity criteria. As

illustrated in Figure 3 (similar to Berger ’s [1], p. 122), the optimum

MSE encoding strategy reproduces onlythose portions of the source

25
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V.

Preserved Spectral Density

- Error  Spectral Density

- 

0 w (Radian frequency)  it

Figure 3. Illustration of preserved source and error
spectral densities for optimum MSE

- encoding (see Berger [1], p. 122).
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-I
spectrum 4’ (w) such that 4’ (w) > 0 , where the fraction (4’ (w) - 0) 1

x x x
4’ (w) of the source power in an infinitesimal band centered at w is

preserved in the reproduction {y}. In general, a different R
E

(D)

curve results for each different source spectrum. However , refer-

ring again to Figure 2 , the optimum MIC (or MLC ) encoder repro-

duces all portions of the source spectrum 1 (w) with the same rela-

tive fidelity . Thus , the savings in required transmission rate (for

fixed D) afforded by the MSE fidelity criterion for sources with

memory is not available with the MIC or MLC fidelity cri teria.  A

moment ’ s reflection will convince one that the aforementioned

savings is purchased at the expense of higher relative distortion in

“quieter ” portions of the spectrum.

in (34) and (35) is replaced by IA (w)I
2
~~ (w), we obtain

the rate-distortion function for a Gaussian source subject to a

frequency-weighted MSE (FWMSE) fidelity criterion [ii . The

particular choice

r i’’
I ~~ (w) I , • (w) > 0L x i  x

IA (~)I2 
(37) - 

-

0

make s these equations identical to (25) and (26 ) (for the case
• 

- W(w) E 1), i. e. ,  the rate-distortion function R 1(D) for a Gaussian

source subject to the MIC fidelity criterion is identical to the rate-

distortion function of the same source subject to a FWMSE fidelity

criterion, where the weighting function is the inverse of the source

spectrum. It should be emphasized, however , that the two fidelity

criteria are not equivalent. This FWMSE is still sensitive to a

linear transformation between the source and its reconstruction,

- _  

_ _



4 ’  while the MIC is not. Thus , the encoder-decoder structure dic-

tated by this FWMSE criterion is more rigid than that specified by

the MIC criterion.

As an example of an application in which the MIC or MLC

fidel ity criter ia would be preferred over the MSE criterion, we

cons ider the problem of transmitting the (Gaussian) output {x) of a

remote passive surveillance sensor , where the reconstructed data

is to be (auto- or cross-)  spectrum analyzed. For example, the

user may be interested in detecting the presence of narrow-

bandwidth spectral components against a background of broad-

bandwidth (generally non-white) noise. The results of optimum

encoding of such a source unde r MSE and MIC (or MLC ) fidelity

criteria are depicted in Figures 4(a) and 4(b), respectively.

The MSE encoding produces relatively little distortion of the narrow-

band components which lie in the “louder ” portions of the spectrum,

while totally eliminating components lying in the quietest portion of

the spectrum. It should be obvious that such an encoding strategy

may well be disastrou s from the users ’ point of view. From the

results of the previous section , however , optimum MIC or MI.C

encoding produces a reconstruction process (y} which is related

to the source process {x) via EquatIon (9):

(38)

~k 
Lxk + z k ,

where {z) is a Gaussian process independent of {x}. Moreover,

fr om Property 2.4, the fraction of ~y(W) which is contributed by the

source process Is constant for all w (for W (w) 1). Therefore, if

the reconstruction process is subjected to auto-spectrum analysis,

the relative error contributed by the noise {z} is constant at all

28
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Figure 4(a). Example of optimum MSE encoding effects.
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Figure 4(b). Example of optimum MIC or MLC
encoding effects .
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V.

frequencies.  Similarly, if the {y} realization is cross-spectrum

analyzed with another waveform, the relative error in the cross-

spectral estimate due to {z} is constant at all frequencies. If no

a priori information is available concerning the center frequency

and narrowband SNR distributions of narrowband component s of

interest, then a reasonable strategy is to spread the relative dis-.

tortion of the source spectrum uniformly over all frequencies, since

this will minimize the maximum relative distortion in any portion

of the spectrum. This is precisely the effect produced by optimum

MIC or MLC encoding. By choosing an appropriate frequency
weighting function W (w), the user may assign a priori relative signi-
ficance to dif ferent portions of the spectrum.

No claim is made that the MIC or MLC fidelity criteria are

superior to the MSE criterion for all applications. Indeed, any

data compression application in which the preservation of the gross

features of the source output (e. g . ,  electrocardiogram signals) is

deemed important would likely be better suited to optimum MSE

encoding . There are , however , many data compression applications ,

other than the example described above , in which there is little or

no physical justification for such a fidelity requirement. If the

user ’s relative interest in various reg ions of the source spectrum

is not proportional to the absolute power contained in these reg ions ,
then the MIC or MLC fidelity criteria may be more appropriate.

30
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I
VI. CONC LUSION

~ j 
Two new fidelity criteria for discrete-time source encoding

have been introduced. Interesting features of the MIC and MLC

f idelity cr iter ia have been described, and a comparison made with

the mean-squared error (MSE ) fidelity criterion . The rate-

distortion function s for a stationary Gaussian source subject to MIC

or MLC fidelity constraints were derived, and the corresponding

optimum encoder behavior explained. These results indicate a

fundamental difference between the MSC-related fidelity criteria

and the MSE criterion. The remote passive surveillance problem

represents an application where this difference is highly significant

insofar as the optimum encoding strategies are concerned.

Our current efforts are addressing the problem of practical

encode r des igns f o r  these new fidelity criteria, including the per-

formance of these encoders relative to the rate-distortion curve s

which have been derived.
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